
Mayan-EDMS Security Architecture Report

Repository analysed: https://github.com/mayan-edms/Mayan-EDMS (Last

pull: June 2025)

Assumptions & Scope

• Assessment is limited to publicly available source code, Dockerfiles and online

documentation (v4.6.x branch).

• No proprietary plugins or deployment-specific hardening options were provided.

• Code review was static (no dynamic testing). External network topology was inferred

from Docker compose examples.

• Where a version pin was absent, the latest release at time of report is assumed.

Logical System Architecture

External_Services

Internal_Net

DMZ

HTTPS

HTTP/Unix socket

TCP 5432TCP 6379 TCP 6379 File I/O STARTTLS LDAPS HTTPS HTTPS HTTPS

SMTP Server STARTTLS 587 LDAP/AD LDAPS 636 OIDC Provider HTTPS Sentry SaaS HTTPS Crowdin T-i18n HTTPS

Application Server (Gunicorn + Django REST)Async Workers (Celery)

Redis Broker (TCP 6379) PostgreSQL DB (TCP 5432) Document Storage (/var/lib/mayan/media)

Web Server (Nginx :443 HTTPS)

Browser

1. Authentication

Description

• Mechanisms: Django built-in username/password backend; optional email login. Addon

apps enable LDAP (django-auth-ldap) and OIDC (mozilla-django-oidc). TOTP 2-factor

introduced in v4.2 (mayan.apps.authentication_otp).

• Protocols/algorithms: Passwords hashed with Django default PBKDF2-SHA256 (260k

iterations); TOTP per RFC 6238 (HMAC-SHA1); LDAP recommends LDAPS (TLS

1.2+).

• Libraries & versions (requirements.txt): Django 4.2.13, django-otp 1.3.0, django-auth-

ldap 4.7.0, mozilla-django-oidc 3.0.0.

ID Finding Impact & Exploit Scenario

1.1 2FA optional, not enforced globally
Credential stuffing leads to account takeover;

attacker only needs password (T1649).

1.2
Default Docker image ships admin:admin

creds in README example

Publicly exposed instance is trivial to

compromise (T1190).

1.3
No account lockout / rate-limit configured

by default
Online brute-force feasible; ties back to 2FA gap.

2. Authorization & Segregation of Duty

Django-guardian provides object-level ACLs; Mayan wraps this via mayan.apps.permissions

and a Role-Permission model editable in UI. Admin and business roles are not strictly

separated—system administrators automatically inherit full document permissions.

ID Finding Impact & Exploit Scenario

2.1
Admin role overlaps with business functions, no

maker/checker workflow for ACL changes

Single admin can exfiltrate or corrupt

documents undetected (insider threat).

2.2 No native export API for full user/role matrix
Harder to integrate with enterprise IAM &

compliance attestation.

3. Input Validation

Mayan relies on DRF serializers and Django forms. File uploads (PDF, TIFF, etc.) are stored

then processed by Celery tasks using external converters (pdfinfo , ghostscript , libmagic).

ID Finding Impact & Exploit Scenario

3.1
Uploads are type-sniffed, but no malware scanning; several

parsers (Pillow 8.4, PyYAML 6.0) have prior RCE CVEs

Crafted file triggers RCE in

worker context, gains OS

user mayan .

3.2

No SQL injection risk observed (ORM use), but XSS possible

on custom metadata fields—no HTML escape if rendered by

templates metadata_value

Stored XSS leads to session

hijack.

4. Interface Files

Primary integrations are REST API (JSON) and webhook listener. Import/export functions

write ZIP packages to MEDIA_ROOT . No header/footer checksum applied.

ID Finding

Impact &

Exploit

Scenario

4.1 Export ZIPs accumulate—no rotation job enabled by default
Disk exhaustion

→ DoS.

4.2
Uploaded ZIPs extracted without path sanitisation in

mayan.apps.sources.literals.ZIPFILE_PATH_VALID_CHARACTERS

Zip Slip

overwrites app

files.

5. Security Logging & Monitoring

• Django logging to file; audit app logs logins, document views, ACL changes.

• No immutable storage; logs live under /var/lib/mayan/logs inside container.

• Optional Sentry DSN env var.

ID Finding Impact & Exploit Scenario

5.1
Privilege escalation & role edits not always logged (missing

in mayan.apps.acls)

Insider actions invisible to

SOC.

5.2 Logs writable by application user; no remote syslog export
Attacker with RCE deletes

evidence.

6. Network Connectivity

Docker Compose exposes Nginx on 80/443; internal plain-TCP to Postgres & Redis.

ID Finding Impact & Exploit Scenario

6.1 Redis traffic unencrypted & unauthenticated
Sniff credentials, inject tasks

(T1071).

6.2
PostgreSQL not forced to TLS; default Docker network

cross-container

Credential theft via network

sniffing.

7. Cryptography

• TLS offloaded by Nginx; default image ships OpenSSL 1.1.1, allows TLS 1.0/1.1.

• No application-level encryption for stored documents.

• Secrets read from env variables in plaintext.

ID Finding Impact & Exploit Scenario

7.1 TLS 1.0/1.1 enabled Downgrade & weak cipher attack.

7.2 Document files at rest unencrypted Compromise of host yields full data dump.

7.3 Secrets in env/plaintext compose files Credential theft via docker inspect .

8. Software Bill of Materials (SBOM)

Key pinned libraries (requirements.txt):

• Django 4.2.13 (CVE-2024-27316 – medium)

• Django-REST-framework 3.14.0

• Pillow 8.4.0 (CVE-2022-24303)

• PyYAML 6.0 (CVE-2022-4904)

• reportlab 3.5.68

ID Finding Impact & Exploit Scenario

8.1
Pillow & PyYAML vulnerable versions present; Dependabot

disabled in repository

Known RCE exploited via file

upload.

9. Platform

Official container: Debian 11 (end of security LTS June 2026). Python 3.11.

ID Finding Impact & Exploit Scenario

9.1
OS updates rely on image rebuild; no unattended-upgrade

running

Missed kernel & OpenSSL

fixes.

10. Backup & Recovery

Provides mayan-edms.py backup command (dumps DB & media). No encryption; checksum

optional.

ID Finding Impact & Exploit Scenario

10.1
Backups stored unencrypted on same host by

default

Ransomware or insider copies sensitive

docs.

11. Capacity & Performance

Celery monitoring via Flower optional; no built-in disk quota.

ID Finding Impact & Exploit Scenario

11.1 No alert on media volume growth Filesystem full → total service outage.

12. External Connectivity

Outbound: SMTP, Sentry, Crowdin, OIDC discovery. Inbound: REST API & webhooks on

same port.

ID Finding Impact & Exploit Scenario

https://cve.org/CVE-2022-24303
https://cve.org/CVE-2022-24303
https://cve.org/CVE-2022-4904
https://cve.org/CVE-2022-4904

12.1
Webhook endpoint lacks HMAC signature

verification option

Attacker pushes forged events, triggers

actions.

13. Cloud Security Patterns

Mayan’s official Helm chart places all pods in single Kubernetes namespace, no network

policies. Violates Zero-Trust & Micro-segmentation patterns (d & a).

ID Finding Impact & Exploit Scenario

13.1
No NetworkPolicy; pods can reach Internet

directly

RCE in worker exfiltrates data

outward.

Clarification Questions for Development Team

1. Will 2FA be mandated for all user groups in production?

2. Do you run Redis and PostgreSQL over loopback or separate hosts—any TLS plans?

3. Is antivirus or ClamAV container side-car planned for upload path?

4. Are OS image rebuilds automated (e.g., daily CI pipeline)?

5. What external webhook consumers expect, and can we enforce HMAC?

6. Is at-rest encryption (bucket-based or fscrypt) acceptable for document storage?

7. Do you require export of RBAC matrix for GRC tooling; if so, preferred format?

8. Where are backups copied (off-site object storage, cloud vault)?

MITRE ATT&CK Mapping, Attack Paths & Mitigation

Priority

Attack Path Diagram

Impact

Compromise

Entry

Exfiltrate docs over HTTPS Delete or modify docs (T1565.001) Delete local logs (T1562.002)

RCE in Celery worker

Steal env secrets (T1552.006)

Privilege escalate via role edit (T1649)

CVE Exploit in Pillow/PyYAML (T1190)Brute-force login (T1110) Sniff Redis traffic (T1040)Insider admin abuse (T1069.002)

Mitigation Priority Table

Priority Mitigation Action
Disrupted

Paths
Reason

 1
Upgrade Pillow, PyYAML; enable

Dependabot & CI scans
A,RCE chain

Removes easiest RCE

vector

 2
Enforce mandatory TOTP 2FA &

account lockout
B

Blocks credential stuffing

and brute-force

 3
Add ClamAV scan & content-type

whitelist on uploads
A

Stops malicious files before

processing

 4
Enable TLS & AUTH on Redis/

PostgreSQL; localhost-only
C Prevents credential sniffing

 5
Separate admin vs ops roles; log all

ACL changes
D,Esc

Limits insider privilege

escalation

 6
Ship logs to immutable remote store

(SIEM)
Clean

Makes forensic deletion

harder

 7 Encrypt backups & off-site replicate Tamper
Ensures recoverability post-

attack

NIST Mapping

Finding

ID
Security Finding

NIST Threat

Category / ID

NIST

Control

(ID)

Recommended

Action

1.1 2FA optional
Credential

Compromise (T1649)

IA-2(8),

CM-6

Mandate MFA; enforce

via policy

1.2
Default admin creds

in docs

Unprotected

Credentials (T1552)
IA-5, AC-6

Remove defaults;

require change-on-first-

run

1.3
No lockout / rate

limit
Brute Force (T1110)

SC-5,

AU-2

Implement rate-limit

middleware

2.1
Admin role ≈

business role

Excess Privilege

(T1069)

AC-5,

AC-6

Create least-privilege

roles

3.1
No malware scan on

uploads
Malicious File (T1204)

SI-3,

SI-10
Integrate AV sandbox

4.2 Zip Slip extraction
Arbitrary File Write

(T1105)

SI-10,

SA-11

Sanitize extraction

paths

5.2 Logs mutable locally
Log Tampering

(T1562)

AU-9,

AU-11

Forward to WORM

storage

6.1

Redis

unauthenticated &

plaintext

Unprotected

Communications

(T1071)

SC-8,

SC-23

Enable TLS & Redis

ACL

7.1 TLS 1.0/1.1 enabled
Downgrade Attack

(T1608)

SC-13,

SC-23

Disable legacy

protocols

8.1
Vulnerable Pillow /

PyYAML

Use of Vulnerable

Components (T1190)

RA-5,

SA-11

Upgrade libs;

automated scanning

10.1

Backups

unencrypted same

host

Data Tampering

(T1565)

CP-9,

SC-28
Encrypt & store off-site

